

Principles of Fluid Mechanics

By Andreas N. Alexandrou

[Download now](#)

[Read Online](#)

Principles of Fluid Mechanics By Andreas N. Alexandrou

This book provides a comprehensive and wide-ranging introduction to fluid mechanics, assuming only a basic knowledge of calculus and physics. Introduces fluid mechanics within the context of a broad range of topics and disciplines by combining elements and concepts from different disciplines as is often found in solutions to engineering problems. The book integrates a discussion of fluid flow phenomena with that of other subjects, such as Solid Mechanics, Heat Transfer, Thermodynamics, and others. It also includes discussions of other fields of specialization often used to solve engineering problems, such as chemistry, biology, economics, sociology, and others. And, it integrates the use of computers and modern experimental techniques. The first edition of *Introduction to Fluid Mechanics* provides a unique thematic organization and divides the material into three sections: **Theory**. This section is divided into four categories: Introduction, Conservation Laws, Fluid Kinematics, and Fluid Dynamics. **Analysis**. In this section, procedures such as Dimensionless Analysis, Analytics, Experimental and Numerical Solutions are introduced and applied to fundamental problems. **Special Topics**. Topics such as ideal, inviscid flow, compressible flow, and dynamics of rotating fluids are reserved for separate chapters. The book also introduces ideas from computational and experimental fluid mechanics. An essential reference for all engineering professionals.

 [Download Principles of Fluid Mechanics ...pdf](#)

 [Read Online Principles of Fluid Mechanics ...pdf](#)

Principles of Fluid Mechanics

By Andreas N. Alexandrou

Principles of Fluid Mechanics By Andreas N. Alexandrou

This book provides a comprehensive and wide-ranging introduction to fluid mechanics, assuming only a basic knowledge of calculus and physics. Introduces fluid mechanics within the context of a broad range of topics and disciplines by combining elements and concepts from different disciplines as is often found in solutions to engineering problems. The book integrates a discussion of fluid flow phenomena with that of other subjects, such as Solid Mechanics, Heat Transfer, Thermodynamics, and others. It also includes discussions of other fields of specialization often used to solve engineering problems, such as chemistry, biology, economics, sociology, and others. And, it integrates the use of computers and modern experimental techniques. The first edition of *Introduction to Fluid Mechanics* provides a unique thematic organization and divides the material into three sections: **Theory**. This section is divided into four categories: Introduction, Conservation Laws, Fluid Kinematics, and Fluid Dynamics. **Analysis**. In this section, procedures such as Dimensionless Analysis, Analytics, Experimental and Numerical Solutions are introduced and applied to fundamental problems. **Special Topics**. Topics such as ideal, inviscid flow, compressible flow, and dynamics of rotating fluids are reserved for separate chapters. The book also introduces ideas from computational and experimental fluid mechanics. An essential reference for all engineering professionals.

Principles of Fluid Mechanics By Andreas N. Alexandrou Bibliography

- Sales Rank: #2400654 in Books
- Published on: 2001-01-28
- Original language: English
- Number of items: 1
- Dimensions: 9.90" h x 1.40" w x 8.00" l, 2.80 pounds
- Binding: Paperback
- 592 pages

 [Download Principles of Fluid Mechanics ...pdf](#)

 [Read Online Principles of Fluid Mechanics ...pdf](#)

Editorial Review

From the Inside Flap

Preface

This textbook is an introduction to fluid dynamics. The first nine chapters form the basis for the first sophomore level course in fluid dynamics. In addition, Chapters 4, 5, 6, 8, 9, 10, 11, 12, and 13 form the basis for a second course in fluid dynamics. The main prerequisite for the book is a basic knowledge of calculus and physics.

Physical phenomena, and by extension fluid flow, are governed by the same basic laws. Therefore, particular topics can be deduced from the more general framework provided by the laws of nature. For this reason, whenever possible the material in this textbook is presented from a general, deductive viewpoint. This approach is also consistent with the needs of modern engineering analysis and design, and is achieved without sacrificing the quality or quantity of the discussion of "classical" fluid flow phenomena.

Traditionally, students consider fluid dynamics to be a difficult topic because of its mathematical nature and the apparent complexity of its concepts. Often, whether in class or textbooks, the material is presented as a collection of seemingly unrelated concepts, thus making it more difficult for students to fully comprehend the material. Here, the material is organized in a manner that avoids this confusion; similar themes are grouped and discussed together.

Some of the unique features of this book include (a) the point of view of the presentation, (b) the thematic organization of the material, and (c) the introduction of ideas from computational and experimental fluid dynamics. The material and concepts are demonstrated and reinforced through examples and problems for each section and chapter.

Since most concepts in fluid dynamics are quite mathematical, one of the appendixes reviews the basic mathematics required for the study of fluid dynamics. In my experience, this chapter prepares students for the more mathematically rigorous parts of the material.

The book is divided into three parts: Theory

The material in this part is divided into the following categories: (a) introduction, (b) conservation laws (c) fluid kinematics, and (d) fluid dynamics (for finite and differential control volumes). Since the material is presented from a general point of view, in which the universality of the laws of nature is stressed, Hydrostatics is not discussed in a separate chapter but is presented as a special case of the momentum equation in Chapter 2.

Irrespective of the driving forces or dynamic conditions that induce flow, the motion and deformation of fluid particles are characterized by simple kinematic principles. Therefore, in Chapter 4, fluid flow is defined using purely kinematic arguments without reference to the dynamic effects.

Following the kinematics of fluid flow, Chapter 5 introduces and emphasizes the governing laws and constitutive relations. The concept of the constitutive behavior of fluids and therefore of the viscosity of fluids follows naturally from the discussion. Concepts such as laminar flow, turbulent flow, and non-Newtonian fluids are also presented within this framework. An entirely new section on boundary conditions completes the theoretical description of fluid systems. Analysis

Following the theoretical and mathematical description of fluid systems, this part deals with the analysis of fluid problems. This step is also consistent with engineering design methodology. In Chapters 6, 7, and 8 and in Chapters 12 and 13, various solution procedures such as dimensionless analysis, analytic, experimental, and numerical solutions are introduced and applied to fundamental problems. Traditional concepts such as internal and external flows are presented in a separate chapter under a common theme dealing with the use of combined analytical and experimental methods in fluid dynamics. Special Topics

Finally, special topics such as ideal, inviscid flow, compressible flow, and dynamics of rotating fluids are reserved for separate chapters. This avoids unnecessary confusion about the relation of these topics to the fundamental theory of fluid dynamics. Instructors can select, at will, the topics to cover in their course.

I would like to express my thanks to my colleagues Nikos Gatsonis, David Olinger, Hamid Johari, Jim Hermanson, and David Watt, who have helped me in the preparation of this manuscript by providing not only advice and encouragement, but also original problems and pictures from their work. Particular mention is reserved for Mark Richman, whose unfailing intuition and keen mathematical insight have helped me throughout the writing of the manuscript. I would also like to thank Nadeem Majaj and Professor Marios Soteriou for providing problems, and Lisa Majaj for her editing prior to submission of the manuscript.

ANA
WPI

From the Back Cover

A DEDUCTIVE APPROACH TO FLUID MECHANICS

By following a concise thematic organization, **Principles of Fluid Mechanics** covers the basic theory, physics, and applications of fluid flow from a general viewpoint that makes it easy for students to follow and understand.

- Introduces fluid mechanic concepts using the universality—and simplicity—of the conservation laws
- Covers the material in a deductive manner by following a systematic, step-by-step approach
- Reinforces the discussion and concepts through numerous example problems
- Stresses the combined use of mathematical analysis and experimental and computer modeling in solving problems
- Promotes an overall educational approach required by current engineering problems that are open-ended and multidisciplinary in nature

About the Author

ANDREAS ALEXANDROU is currently a Professor of Mechanical Engineering at Worcester Polytechnic Institute and Director of the Semisolid Metal Processing Center. He received the B.S. degree in Mechanical Engineering (1982) from the American University of Beirut while on a U.S. AID/Fullbright scholarship. At the University of Michigan he earned the M.S. degrees in Mechanical Engineering (1983) and Civil Engineering (1985), and the Ph.D. degree in Mechanical Engineering (1986). His research interests and contributions are in basic fluid flows, fluid mechanic applications in material processing, and microgravity and wake flows. He has well over 70 scientific publications and numerous presentations to his credit, and has co-authored an advanced textbook on viscous fluid flow. He received the 1992 WPI Board of Trustee's Award for Outstanding Teaching, the 1993 Morgan Distinguished Instructorship Award, and the 1996 Russell M. Searle Teacher of the Year Award in Mechanical Engineering.

Users Review

From reader reviews:

Cortney Roller:

Have you spare time for the day? What do you do when you have much more or little spare time? Yes, you can choose the suitable activity intended for spend your time. Any person spent their particular spare time to take a move, shopping, or went to the actual Mall. How about open as well as read a book allowed Principles of Fluid Mechanics? Maybe it is to become best activity for you. You realize beside you can spend your time using your favorite's book, you can smarter than before. Do you agree with the opinion or you have various other opinion?

Latasha Hisle:

The book untitled Principles of Fluid Mechanics contain a lot of information on it. The writer explains your girlfriend idea with easy means. The language is very clear to see all the people, so do not worry, you can easy to read the idea. The book was compiled by famous author. The author provides you in the new age of literary works. It is possible to read this book because you can read more your smart phone, or product, so you can read the book in anywhere and anytime. In a situation you wish to purchase the e-book, you can open their official web-site in addition to order it. Have a nice study.

Carrie Wilson:

You may get this Principles of Fluid Mechanics by go to the bookstore or Mall. Just simply viewing or reviewing it may to be your solve issue if you get difficulties on your knowledge. Kinds of this e-book are various. Not only by simply written or printed but additionally can you enjoy this book through e-book. In the modern era just like now, you just looking from your mobile phone and searching what your problem. Right now, choose your current ways to get more information about your publication. It is most important to arrange you to ultimately make your knowledge are still revise. Let's try to choose correct ways for you.

Robert Howard:

As a college student exactly feel bored in order to reading. If their teacher questioned them to go to the library or make summary for some e-book, they are complained. Just minor students that has reading's internal or real their leisure activity. They just do what the instructor want, like asked to the library. They go to there but nothing reading significantly. Any students feel that reading is not important, boring and also can't see colorful pics on there. Yeah, it is to be complicated. Book is very important in your case. As we know that on this time, many ways to get whatever we really wish for. Likewise word says, many ways to reach Chinese's country. Therefore this Principles of Fluid Mechanics can make you really feel more interested to read.

**Download and Read Online Principles of Fluid Mechanics By
Andreas N. Alexandrou #BMLR3J9UEF8**

Read Principles of Fluid Mechanics By Andreas N. Alexandrou for online ebook

Principles of Fluid Mechanics By Andreas N. Alexandrou Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Principles of Fluid Mechanics By Andreas N. Alexandrou books to read online.

Online Principles of Fluid Mechanics By Andreas N. Alexandrou ebook PDF download

Principles of Fluid Mechanics By Andreas N. Alexandrou Doc

Principles of Fluid Mechanics By Andreas N. Alexandrou MobiPocket

Principles of Fluid Mechanics By Andreas N. Alexandrou EPub